En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
Просто́е число́ — натуральное число, имеющее ровно два различных натуральных делителя. Другими словами, натуральное число является простым, если оно отлично от и делится без остатка только на и на само .
Пример: число простое (делится на и на ), а не является простым, так как, помимо и , делится на — имеет три натуральных делителя.
Изучением свойств простых чисел занимается теория чисел, а основная теорема арифметики устанавливает в ней их центральную роль: любое целое число, превышающее , либо является простым, либо может быть выражено произведением простых чисел, причём такое представление однозначно с точностью до порядка сомножителей. Единицу не относят к простым числам, так как иначе указанное разложение становится неоднозначным: .
Натуральные числа можно разделить на три класса: единица (имеет один натуральный делитель), простое число (имеет два натуральных делителя), составное число (имеет более двух натуральных делителей). Как простых, так и составных чисел бесконечно много.
Последовательность простых чисел начинается так:
Существуют различные алгоритмы проверки числа на простоту. Например, известный метод перебора делителей в сравнении с другими примитивный и медленный.
Простые числа широко используются в математике и смежных науках. Во многих алгоритмах информационных технологий, например в асимметричных криптосистемах, используются свойства факторизации целых чисел.
Многие проблемы, касающиеся простых чисел, остаются открытыми.
Существуют обобщения понятия простого числа для произвольных колец и других алгебраических структур.